Martin Lab

randiRandi Martin. My major research interests are in the cognitive neuroscience of language and working memory. One continuing interest has been in the question of whether there are separable short-term storage systems for maintaining different kinds of verbal and nonverbal information. Within the language domain, this research has focused on distinguishing phonological and semantic short-term memory systems and their role in language production and comprehension. A related topic is the role of executive processes in language, focusing on inhibitory and task shifting abilities. These topics have been investigated through: 1) standard behavioral studies of young and old neurally intact individuals, 2) studies of brain damaged patients with language or working memory deficits, 3) functional MRI studies of healthy and brain damaged patients, and 4) transcranial-magnetic (TMS) studies involving the transient disruption of processing in healthy individuals.

In the neuroimaging studies, we have been using cutting-edge multivariate techniques (MVPA and RSA), which analyze the pattern of activation across small subregions of the brain to determine those regions involved in maintaining different types of information. We are also using voxel-based lesion symptom (VLSM) mapping to address a similar issue by relating the brain regions damaged for patients with different types of working memory deficits.

Two recent projects have gone in new directions. One project involves analyzing the degree of modularity of overall brain organizations across individuals and relating that to task performance. Our findings suggest that a highly modular system is for better performing simple tasks whereas a less modular, and more interactive system, is better for performing complex tasks. We are currently applying this approach to study individual differences in sentence comprehension. A second project, which has major NIH funding, examines the recovery of language, working memory, and executive processes from the acute stage of stroke to one-year post stroke, relating behavioral performance at different timepoints to damage to cortical regions and fiber tracts connecting those regions.

Brain and Language Lab Website


Curtiss Chapman. Curtiss is a 6th year graduate student in the Martin lab. He received a B.A. in linguistics from UT Austin in 2010 and his M.A. in cognitive neuroscience from Rice in 2017. His studies how meaning is accessed in language comprehension and production by working with stroke and dementia patients and by using behavioral experiments, large database analyses, and computational modeling.

Autumn Horne. Autumn is a second year graduate student in the Martin lab. She received a B.A. in Psychology and English literature from Erskine College where she also minored in biology and chemistry. She uses a combination of behavioral and neuroimaging methods to test theories of word production and sentence comprehension. Autumn is also a graduate writing consultant at Rice’s Center for Academic and Professional Communication.

Qiuhai Yue. Qiuhai is a graduate student, working with Dr. Martin. He received a B.S. in Physics from Beijing Normal University in 2008, and a M.S. in Cognitive Neuroscience from BNU in 2011. His research focuses on using experimental psychology and cognitive neuroscience approaches (e.g., fMRI, TMS) to understand the theoretical and neural bases of working memory and its relation to language. He is also interested in uncovering the relation between brain network organization and behavioral performance by using graph theoretic tool.